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ABSTRACT 

The positioning of the actuators, together with 
the determination of the controller gains in the 
design of actively controlled structures are very 
important in the characterization of mechatronic 
systems. In this paper is formulated, described 
and solved a multi-objective discrete-continuous 
optimization problem that determines the optimal 
position of piezoelectric actuators/sensors along a 
flexible structure, as well as the controller gains. 

For that purpose, a discrete-continuous 
optimization problem is defined, and optimization 
methods based on Genetic Algorithms (GAs) are 
used for the determination of the discrete 
positions of the actuators/sensors along the 
structure. The goal of this optimization step is to 
minimize the control energy applied to the 
system. Simultaneously, a second optimization 
step is proceeded, in order to determine the gain 
values of the controller, by using classical 
optimization techniques (SUMT), aiming at 
maximizing the structural damping without 
surpassing the maximum electric load admitted by 
the actuators. 

 
NOMENCLATURE 

C - kinetic energy  
U - potential energy 
We - work done by electrical forces 
Wm - work done by magnetic forces 
δW - Virtual work done by external forces 
Pb - Body forces 
Ps - Surface forces 
Pc - Concentrated load 
Q - Surface electric charge 
u - Displacement 
φ  - Electric potential 
Nx - Mechanical interpolations functions 
Nφ - Electrical interpolation functions 
ρ - Density 
V - Volume  

S - Surface 
[]s - Subtitles s refer to the structure 
[]p - Subtitles p refer to the piezoelectric 
actuators 
[]T - Transpose vector or matrix 
T - Stress 
S - Strain 
D - Electric displacement 
E - Electric field 
[cE] - Elasticity matrix (constant electric field) 
[e] - Dielectric permittivity matrix 
[ε S] - Dielectric matrix (constant mechanical 
strain) 
L - Finite element length 
t - Thickness 
w - width 
m - Elemental mass matrix 
D - Proportional damping matrix 
[ks] - Structural stiffness matrix 
[kuu] - Piezoelectric stiffness matrix,  
[kuφ] [kφu] - Electromechanical matrix 
[kφφ] - Piezoelectric capacitance matrix 
{uf}, F - External forces 
[GP] - Proportional gain matrix 
[GD] - Derivative gain matrix 
[Ts] - Sensor-actuator distribution matrix 
 

INTRODUCTION 
The study of smart structures has received 

great attention along the last decade in regard to 
their ability of improving the performance of 
conventional flexible structures, especially for 
aerospace and aeronautic applications. 

Different methodologies have been used for 
modeling smart structures, however one of the 
most useful is the Finite Element Method (FEM), 
first presented for piezo mechanical systems by 
Allik and Hughes[1]. Later this formulation was 
extend for different structural elements[2][3][4]. 

The FEM models for mechatronic systems can 
be represented by state space equations as 
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presented by Hagood et al. [5]. Different control 
systems have been proposed for smart structures 
[6][7], however the position, the number and 
dimension of the actuators in the structure are 
frequently defined by personal experience, which 
can imply serious difficulties when complex 
structures are concerned. Some considerations 
about position and size of actuators are presented 
in several research works [8][9][10][11] 

The topic of the present contribution has been 
studied by various authors: Gabbert et al. [10] 
used classical optimization for determining 
controller parameters; Kirby III and Matic [11] 
worked with genetic algorithms to determine 
optimal actuator size and location for two 
piezoceramic actuators bonded to a cantilever 
beam; Lammering et al. [12] used the electric 
potentials to minimize the control effort in the 
optimal placement of piezoelectric actuators in 
adaptive truss structures. 

Some of the basic ideas used in this paper 
were first described in a previous work by Lopes 
et al. [13]. The design procedure is based on a 
multi-objective discrete-continuous optimization 
problem that determines the optimal position of 
piezoelectric actuators/sensors along a flexible 
structure, as well as the controller gains. 

In the determination of optimal discrete 
positions of actuators/sensors, Genetic 
Algorithms (GA) techniques were used. The goal 
was to minimize the control effort applied to the 
system with respect to a pre-determined vibration 
reduction requirement. As constraint functions, 
the maximum number of actuators and the 
actuator position surface are taken into account. 
The elements of a discrete position matrix were 
considered as design variables. 

Classical techniques of optimization (SUMT) 
are used simultaneously together with the discrete 
optimization scheme for the determination of the 
continuous gain values of the controller (Zhu et 
al. [14]). The objective here is to maximize 
damping introduced in the structure by means of 
piezo –actuators. Restrictions concerning the 
maximum electric load admitted by the 
actuators/sensors must be satisfied in the 
optimization procedure. 

A proportional derivative (PD) control system 
was used in the design of the controller, which 
was applied to a flexible cantilever beam. 

 
FINITE ELEMENT MODEL 

The finite element technique is formulated 
using the Virtual Work principle [1] that is based 

in the virtual continuous displacement under 
external electrical and mechanical forces, as 
represented by equation (1): 
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where: t1 and t2 are two different time instants  

Rewriting equation (1) by replacing the energy 
terms by integrals of external forces, and 
assuming that the magnetic work is not 
considered for piezoceramics, we have: 
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This procedure gives the following equation 

for a coupled electromechanical system: 
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where: Pb represents the body forces, Ps 
represents the surface forces, Pc represents the 
concentrated load, Q is the surface electrical 
charge in the actuators, ρ is the density of the 
element, and the subtitles s and p refer to the 
structure and piezoelectric actuators, respectively. 

From equation (6) it is possible to write the 
variational equation for an Euler - Bernoulli 
piezo-actuated beam. The  reference system 
presented in Figure 1 is used, and the following 
assumptions are taken into account: 

 
1. The electric potential is constant in the 

piezoelectric surface, and has a linear 
variation along its thickness. 
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2. The adhesive thickness is not considered. 
3. A perfect mechanical coupling between 

the actuator and the structure is obtained. 
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Figure 1: Reference System. 

 
Interpolation functions are written for the 

displacement {u} and electrical potential {φ}, 
which are expressed in terms of the nodal value, i. 
This procedure leads to the formulation of the 
electroelastic matrix. 

It is considered that the interpolation functions 
have the required property for the correct  
numerical convergence of the problem. It is 
possible to relate the mechanical stress with the 
nodal displacement by a derivation operator (Lu), 
and the electric field with the electric potential by 
a gradient operator, as shown, respectively, by 
equations (7) and (8): 
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It is now necessary to use the piezoelectric 

constitutive relations given by equations (9) and 
(10). 
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Substituting equations (7) and (8) in equations 

(9) and (10), we have: 
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Allowing arbitrary variations of {u}, two 

equilibrium matrix equations are obtained in 

generalized coordinates, as shown by equations 
(13). 
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where the matrices above are defined for the 
structure and piezoelectric path elements 
accordingly (for more details see Pereira and 
Steffen [15]). 

Finally, it is possible to write a global 
equation for the coupled electromechanical 
system by making a simple nodal summation of 
the local contribution of each element, as given 
by equation (14): 
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where: 

[M] – Mass matrix including the structure and 
piezoelectric patches contributions, 
[Kuu] – stiffness matrix including the structure 
and piezoelectric patches contributions, 
[Kuφ] – global electromechanical matrix, 
[Kφφ] – global piezoelectric capacitance 
matrix. 
 

CONTROL STRATEGY 
Before considering the control scheme it is 

necessary to define a subset of coordinates 
corresponding to the placement of the 
actuators/sensors. This subset is related to the 
actuators/sensors positioning [{  to the 
general coordinates [{  by a binary 
distribution matrix [  as shown in equation 
(15). 

}]{}, ss u&u

T
}]{}, uu &

]s

 
{ } [ ]{ }uTu Ss =   and  { } [ ]{ }uTSs &=u&  (15) 

 
][ sT  is a 2m x n matrix, where m is the 

number of actuators/sensors in the structure, and n 
is the total number of degrees of freedom (DOF) 
considered for the system. A “zero” input means 
that no actuator/sensor is placed at the 
corresponding DOF, and a “one” input means that 
an actuator/sensor is placed at that particular 
DOF. 
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Proportional Derivative Controller 
After defining [{  and by 

considering a usual proportional derivative (PD) 
controller, it is possible to write a control law 
based on the electrical potential φ, which can be 
calculated as a function of measurable outputs, as 
shown by equation (16). 

}]{}, ss uu &

 
{ } [ ]{ } [ ]{ sDsP uGuG &+= }φ   (16) 

 
where  and [  are the proportional and 
derivative controller gain matrices, respectively. 
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Proportional damping was introduced in the 
system in order to improve the system 
controllability. The system equation of motion, 
taking into account the control, can be obtained 
by introducing equations (15) and (16) into the 
first part of equation (14): 
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where: 
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where [  is a proportional damping matrix. 

Equation (17) is then integrated with respect 
to time by using the Newmark scheme [16]. 

As {φ} can be calculated through the control 
law equation, the system is considered as a 
voltage controlled one, and the second part of 
equation (14) can be used to calculate the actuator 
surface charge {Q}: 
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Equation (17) can be rewritten in the state 

space form, as represented by equation (21):  
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where is the state vector, [A] 

is the state matrix, [B] is the input matrix, {u
uuz }]}{[{}{ &=

f} is 
the external force, and 
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Natural frequencies and vibration mode 

shapes can be computed from the dynamic matrix 
[A]. From equation (21) it is possible to determine 
the system performance for a set of controller 
parameters. 

 
Control Project 

In this paper two different methodologies 
were used for the controller design. 

 
First approach: it aims at maximizing the 

vibration reduction by repositioning the poles, 
which are expected to be as far left in the complex 
plane as possible. At the same time, the value of 
the driving voltage cannot surpass a given 
maximum value that depends on the PZT 
characteristics. For this purpose, the second part 
of equation (14) can be used as a constraint 
equation in the controller optimal design. 

 
Second approach: it uses the linear 

quadratic regulator (LQR), for which the optimal 
solution can be obtained by the minimization of a 
performance criterion given by: 
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where Q1 and Q2 are weighting matrices, which 
are to be chosen for optimal control purposes. 
Gabbert et al.[10] considers that the mechanical 
energy is physically restricted. In the case of the 
present paper, constraint equations are written in 
such a way that vibration amplitude is limited to a 
given prescribed value. This way, the first term 
Q1 of equation (30) can be neglected in the 
minimization process. The resulting cost function 
can be interpreted as an electrical work done by 
external forces to control the vibrations of the 
system. This situation corresponds to .  φφK=
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Consequently, equation (24) is used in this 

paper for the two different approaches: in the first 
one a discrete objective function is to be 
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minimized to determine the optimal actuator 
positions (the controller gains are obtained from 
the poles positioning); in the second approach, the 
equation is used to determine the position of the 
actuators together with the optimal gain matrices 
of the controller. 

 
OPTIMIZATION PROBLEM 

In the design of smart structures it is required 
the determination of the optimal position of the 
actuators/sensors elements and, simultaneously, 
the gain matrices of the controller. This can be 
achieved through the solution of a discrete-
continuous optimization problem, where the non-
linear optimization problem can be defined as 
follows: 
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C is the number of 
continuous variables, nD is the number of discrete 
variables,  and  are the bounds of the 
continuous design variables. 

jx ,

In this case two optimization goals related to 
the dynamical behavior of the system must be 
achieved simultaneously: the first is the 
minimization of the control effort, as represented 
by the electric work, and the second one is the 
maximization of the structural damping. As it was 
mentioned above, two different approaches are 
used to deal with this problem.  

In the first approach, the two criteria to be 
minimized are represented mathematically by the 
following equations: 
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where: ([Kλ  is the kth eigenvalue of [A], Re 
represents the real part of this eigenvalue, J 

represents the discrete objective function, and fobj 
is the continuous objective function. 

In order to write the constraint equations, the 
surface charge in the actuator is written as: 

 
}{}]{[}]{[ QKuK u =+ φφφφ   (31) 

 
where {φ} is given by equation (16). However, 
the surface charge is limited by a given value that 
is a function of the material proprieties. It is 
possible to write a set of np inequality constraint 
equations by using equation (31): 
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This means that equation (32) is to be 

respected while the structural damping is 
maximized along the optimization procedure. In 
order to limit the mechanical displacement of the 
structure, a new constraint function is added, i.e, 
the vibration amplitude at a given DOF (reference 
DOF), when the control is active, must be lower 
than a prescribed value, as compared with the 
amplitude of the non-controlled system: 
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where: {uref} is the displacement vector of the 
reference DOF for the controller system, and {u0} 
is the displacement vector for the reference DOF 
for the non-controlled system. 

Simultaneous optimization of structural and 
controller parameters is conducted by iteratively 
executing the structural and control optimization 
processes [14], according to the following 
interdependent steps: 

 
1. J is minimized with respect to the discrete 

variables (xj ,   j = 1,...,nD), 
2. fobj(x) is minimized with respect to the 

continuous variables (xj ,   j = nD + 1,...,n). 
 
These steps are repeated until convergence is 

achieved. 
The second approach minimizes the same 

objective function (29) with respect to the 
continuous and discrete variables, The same 
constraints are taken in account. 

The first step is performed as above and in the 
second step J is minimized with respect to the 
continuous variables, instead of fobj(x). 
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Both approaches are performed by using the 
scheme shown in Figure 2. 

 

Initialization of the
 initial population

   Structural Design
 Actuator Placement
(discret optimization)

      Controller Design
(continuous optimization)

  Constraints and 
convergence  check

Optimal Design

 
Figure 2: Optimization scheme. 

 
The discrete optimization was performed by 

using Genetic Algorithms. This is a pseudo 
random search technique based on Darwin’s 
evolution theory. The basic principle of the 
method is that an initial population evolves over 
generations to produce a new and, hopefully, 
better design. The elements (designs) of the initial 
population are randomly or heuristically 
generated. A basic genetic algorithm uses four 
main operators, namely: evaluation, selection, 
crossover and mutation. In this paper the software 
GAOT – the Genetic algorithm Optimization 
Toolbox for MatLab 5 [17] was used. 

The continuous optimization problem is 
solved by using classical sequential unconstrained 
minimization techniques (SUMT). For this 
purpose, the Augmented Lagrange Multiplier 
Method is used to define a pseudo–objective 
function, which takes into account the constraint 
functions. The unconstrained minimization is 
performed by using the BFGS (Broyden-Fletcher-
Goldfarb-Shanno) method. The one dimensional 
search is performed by using polynomial 
interpolation and golden section techniques. 

 
CASE STUDY 

For illustrative purposes, the design of a 
simple structure was simulated. 

 
System Properties 

Consider a clamped-free Euler-Bernoulli 
beam with piezoelectric elements bonded on its 

surface. Mechanical and piezoelectric proprieties 
are presented in tables (1) and (2). 

 
Table 1: Mechanical Properties 

 Structure Actuator/Sensor
Material Aluminum PZT – PSI-5A 
Dimensions 30x500x5 mm 30x25x0,5 mm 
Young’s 
Modulus 70 Gpa 62 GPa 

Density 2710 Kg/m3 7750 Kg/m3 
SUMT  GA 

 Table 2: Piezoelectric Properties 
d31 = -190.10-12 Piezoelectric Strain 

Coefficient (m/V) d33 = 390.10-12 

Dielectric Constant
(F/m) 

 = 7,33.10-9 

Relative Dielectric 
Constant KT = 1800 

s
33ε

 
The system was discretized in 20 equal length 

elements. Each element has 02 nodes, with 02 
DOF per node, namely: (u) vertical displacement 
and (φ ) angular displacement. A zone, where the 
placement of PZTs is accepted for design 
purposes is defined between elements 1 to 10 , as 
shown in Figure 3. 

PZT Placement Zone 

F = 10 N

201 2 3 4 5 6 7 8 9 10

 
Figure 3: Clamped - free beam. 

 
The system was excited by an impulsive force 

of 10 N during 0.1 seconds at its free end. A 
vibration amplitude reduction greater than 70% 
was imposed to the controlled system, as 
compared with non-controlled case. 
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}{
}{
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u
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Simulation Results 

Table (3) presents the two different cases 
studied, according to the control strategy used. 

 
Table 3: Cases studied 

 Maximum 
Number of 

PZTs 

Placement 
Zone 

(Elements) 

Control 
Method

Case 1 05 1-10 Pole 
Case 2 05 1-10 LQR 
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In all cases the optimization process 
converged successfully; all constraints were 
respected, and the results are presented below. 

 
Case 1: the optimum solution uses 04 

actuator positioning on elements 1 to 4. Figure 4 
shows the displacement of the beam free end and 
the electric charge on the critical actuator. 

 

Figure 6: Pole position evolution on the 
continuous optimization process. 
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Figure 4: Displacement and Electric Charge 

for Case 1. 
 

Figure 5 shows the evolution of the mean of 
the population and the best individual. It is 
possible to observe the convergence of the GA 
and its ability to manage with unexpected values 
parameter (10ª generation). 
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Figure 5: Evolution of discrete optimization 

process. 
 
The continuous optimization process can be 

observed by the pole position evolution along the 
optimization process, as shown in Figure 6. The 
process is capable of working with bad initial 
control designs and it is able to focus its priority 
on the critical poles. 

 
 

 
Case 2: the optimization processes impose 

the use of 5 actuators, positioning them on the 
elements 1 to 5. The control system is effective in 
the whole frequency band as show in Figure 7, 
specially on first mode. 
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Figure 7: Frequency response. 
 

This approach does not use pole replacement, 
but, through an indirect way, it is possible to 
observe the continuous optimization process by 
accompanying the movement of the poles in the 
complex plane (Figure 8). 
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Figure 8: Pole position evolution on the 

continuous optimization process. 
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CONCLUSIONS 
A discrete-continuous optimization problem 

was defined aiming at the determination of 
optimal piezoelectric actuators/sensors positions 
together with the determination of optimal 
controller gains for an Euler-Bernoulli beam. 
Genetic Algorithms were used to handle discrete 
design variables and a classical sequential 
unconstrained minimization technique was used 
to deal with continuos design variables. The 
hybrid optimization scheme showed to be very 
effective in solving the problem. When the 
number of candidate positions for the PZTs is 
large compared to the number of available PZTs, 
computing time increases significantly. The 
authors consider that the methodology presented 
has good potential for mechatronic structures 
design. 
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